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Abstract: 
We present a novel ridge detector that finds ridges on vector fields. It is designed 

to automatically find the right scale of a ridge even in the presence of noise, multiple steps 
and narrow valleys. One of the key features of such ridge detector is that it has a zero 
response at discontinuities. The ridge detector can be applied both to scalar and vector 
quantities such as color. 

We also present a parallel perceptual organization scheme based on such ridge de- 
tector that works without edges; in addition to perceptual groups, the scheme computes 
potential focus of attention points at which to direct future processing. 
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scheme are presented. We also show results of a Connection Machine implementation of 
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Two different views on the role of perceptual organization. 

1    Introduction 

• 

Perceptual organization (aka grouping and segmentation) is a process that computes 
regions of the image that come from different objects, with little detailed knowledge of the 
particular objects present in the image. Recent work in computer vision has emphasized 
the role of edge detection and discontinuities in segmentation and recognition. This line 
of research stresses that edge detection should be done at an early stage on a brightness 
representation of the image, and segmentation and other early vision modules operate 
later on (see Figure 1 left). We (like some others) argue against such an approach and 
present a scheme that segments an image without finding brightness, texture, or color 
edges (see Figure 1 right). In our scheme, discontinuities and a potential focus of attention 
for subsequent processing are found as a byproduct of the perceptual organization process 
which is based on a novel ridge detector. 

Segmentation without edges is not new. Previous approaches fall into two classes. 
Algorithms in the first class are based on coloring or region growing [Hanson and Riseman 
1978], [Horowitz and Pavlidis 1974], [Haralick and Shapiro 1985], [Clemens 1991]. These 
schemes proceed by laying a few "seeds" in the image and then "grow" these until a complete 
region is found. The growing is done using a local threshold function, i.e. decisions are 
made based on local neighborhoods. This results in schemes limited in two ways: first, the 
growing function does not incorporate global factors, resulting in fragmented regions (see 
Figure 2). Second, there is no way to incorporate a priori knowledge of the shapes that 
we are looking for. Indeed, important Gestalt principles such as symmetry, convexity and 
proximity (extensively used by current grouping algorithms) have not been incorporated 
in coloring algorithms. These principles are useful heuristics to aid grouping processes and 
are often sufficient to disambiguate certain situations. In this paper we present a non- 
local perceptual organization scheme that uses no edges and which embodies these gestalt 
principles. It is for this reason that our scheme overcomes some of the problems with region 
growing schemes, mainly the fragmenting of regions and the merging of overlapping regions 
with similar region properties. 
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The second class of segmentation schemes which work without edges are based on com- 
putations that find discontinuities while preserving some region properties such as smooth- 
ness or other physical approximations [Geman and Geman 1984], [Terzopoulos 86], [Blake 
and Zisserman 1987], [Hurlbert and Poggio 1988], [Poggio, Gamble and Little 1988]. These 
schemes are scale dependent and in some instances depend on reliable edge detection. Scale 
has been addressed previously at the discontinuity level [Witkin 1983], [Koenderink 1984], 
[Perona and Malik 1990] but these schemes do not explicitly represent regions and often 
meaningful regions are not fully enclosed by the obtained discontinuities. Like with the 
previous class, all these algorithms do not embody any of the Gestalt principles and in 
addition perform poorly when there is a nonzero gradient inside a region. The scheme 
presented in this paper performs perceptual organization (see above) and addresses scale 
by computing the largest scale at which a structure (not necessarily a discontinuity) can be 
found in the image. 

The scheme that we will present is an extension of the brightness-based perceptual 
organization scheme presented in [Subirana-Vilanova 1990]. Such a scheme is based on a 
filter-based ridge detector with a number of important problems we will discuss. These 
include its dependence on scale and its sensitivity to curved shapes. Our analysis will lead 
us to a non-linear filter that overcomes most of these problems. 

Our scheme is designed to work for brightness, texture, and color but our implemen- 
tation deals only with color. Color is an interesting case to study because it is a three- 
dimensional property, not one-dimensional like intensity making the extension of brightness 
based schemes to color non-trivial. 

We begin in the next section by listing reasons for exploring non-edge based schemes 
which should give an idea of the difficulties associated with perceptual organization without 
edges. We then present our approach, including an extended analysis of the ridge-detector, 
and results of a version of our scheme implemented on the Connection Machine. 

2     In Favor of Regions 

What is an edge? Unfortunately there is no agreed definition of it. An edge can be 
defined in several related ways: as a discontinuity in a certain property1, as "something" 
that looks like a step edge (e.g. [Canny 1986] - see Figure 3) and by an algorithm (e.g. 
zero-crossings [Marr and Hildreth 1980]). Characterizing edges has proven to be difficult 
especially near corners, junctions2, [Beymer 1991], [Giraudon and Deriche 1991], [Korn 
1988], [Noble 1988], [Gennert 1986], [Singh and Shneier 1990], [Medioni and Yasumoto 

Note that, strictly speaking,  there are no discontinuities in a properly sampled image (or they are 
present at every pixel) 

Junctions are critical for most edge-labeling schemes which do not tolerate well missing junctions. 

• 

• 
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Figure 2: (From top-left to bottom right) 1: Full shirt image. 2: Canny edges. 3: Color 
edges. 4: An image of a shirt. 5: Original seeds for a region growing segmentation 
algorithm. 6: Final segmentation obtained using a region growing algorithm. 

Figure 3: Left: Model of an edge. Right: Model of a ridge or box. Are these appropriate? 

-^XU 

Figure 4:   Left:   Zero-crossings.    Right:   Sign bit.    Which one of these is harder to 
recognize? (Taken from [Marr and Hildreth 1980]). 
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1987], [Harris and Stephens 1988] and when the image contains edges at multiple scales, 
noise, transparent surfaces, or edges different than step edges (e.g. roof edges) [Horn 1977], 
[Ponce and Brady 1985], [Forsyth and Zisserman 1989]. [Perona and Malik 1990]. 

What is a region? Attempting to define regions bears problems similar to those encoun- 
tered in the definition of an edge. Roughly speaking, it is a collection of pixels in an image 
sharing a common property. In this context, an edge is the border of a region. How can we 
find regions in images? We could proceed in a similar way as with edges, so that a region 
be defined (in one dimension) as a structure that looks like a box (see Figure 3). However, 
this suffers from problems similar to the ones mentioned for edges. 

Thus, regions and edges are two closely related concepts. It is unclear how we should 
represent the information contained in an image. As regions? As edges? Most people 
would agree that a central problem in visual perception is finding the objects or structures 
of interest in an image. These can be defined sometimes by their boundaries, i.e. by 
identifying the relevant edges in an edge-based representation. However, consider now a 
situation in which you have a transparent surface as when hair occludes a face, when the 
windshield in your car is dirty or when you are looking for an animal inside the forest. An 
edge-based representation does not deal with this case well, because the region of interest 
is not well defined by the discontinuities in the scene but by the perceived discontinuities. 
This reflects an object-based view of the world. Instead, a region-based representation is 
adequate to represent the data in the image. Furthermore, independently of how we choose 
to represent our data, which structures should we recover first? Edges or regions? 

Here are some reasons why exploring the computation of regions (without edges) may 
be a promising approach: 

2.1     Human Perception 

There is some psychological evidence that humans can recognize images with region 
information better than line drawings [Cavanaugh 1991]. However, there is not a clear 
consensus [Ryan and Schwartz 1956], [Biederman and Ju 1988]). See also Figure 4. 

2.2     Perceptual Organization 

Recent progress in rigid-object recognition has lead to schemes that perform remarkably 
better than humans for limited libraries of models. The computational complexity of these 
schemes depends critically on the number of "features" used for matching. Therefore, the 
choice of features is an important issue. A simple feature that has been used is a point 
of an edge.   This has the problem that typically, there are many such features and they 



are not very distinctive increasing the complexity of the search process. Complexity can 
be reduced by grouping this features into lines [Grimson 1990]. Lines in this context are a 
form of grouping. This idea has been pushed further and several schemes exist that try to 
group edge segments that come from the same object [Lowe 1984,1987], [Jacobs 1989]. The 
general idea underling grouping is that "group features" are more distinctive and occur less 
frequently than individual features (see [Marroquin 1976], [Witkin and Tenenbaum 1983], 
[Mahoney 1985], [Lowe 1984, 1987], [Sha'ashua and Ullman 1988], [Jacobs 1989], [Grimson 
1990], [Subirana-Vilanova 1990]). This has the effect of simplifying the complexity of the 
search space. However, even in this domain where existing perceptual organization has 
found use, complexity still limits the realistic number of models that can be handled. 
"Additional" groups obtained with region-based computations should be helpful. 

Representations which maintain some region information such as the sign-bit of the 
zero-crossings (instead of just the zero-crossings themselves) can be used for perceptual 
organization. One property that is easy to recover locally in the sign-bit image shown in 
Figure 4 is that of membership in the foreground (or background) of a certain portion of the 
image since a very simple rule can be used: The foreground is black and the background 
white. (This rule cannot be applied in general, however it illustrates how the coloring 
provided by the sign bit image can be used to obtain region information.) In the edge 
image, this information is available but cannot be computed locally. The region-based 
scheme presented in this paper uses, to a certain extent, a similar principle to the one 
we have just discussed. Namely, that often regions of interest have uniform brightness 
properties. 

2.3     Non-rigid objects 

Previous research on recognition has focused on rigid objects. In such a domain, one 
of the most useful constraints is that the change in appearance, in the image, can be 
attributable mainly to a change in viewing position and luminance geometry3. It has been 
shown that this implies that the correspondence of a few features constrains the viewpoint 
(so that pose can be easily verified). Therefore, for rigid-objects, edge-based segmentation 
schemes which look for small groups of features that come from one object are sufficient. 
Since cameras introduce noise and edge-detectors fail to find some edges, the emphasis has 
been on making these schemes as robust as possible under spurious data and occlusion. 

Instead, very little research has been devoted to flexible objects such as an alligator. In 
this case, the change in appearance cannot be attributable solely to a change in viewing 
direction. Internal changes of the shape have to be taken into account. Therefore, grouping 
a small subset of image features is not sufficient to recover the object's pose. A different 
form of grouping that can group all (or most of) the objects features is necessary.  Even 

3 For polygonal shapes, in most cases luminance could be ignored if we could recover edges with no errors. 



after extensive research on perceptual organization, there are no edge-based schemes that 
work in this domain (see also the next subsection). This may not be just a limitation on our 
understanding of the problem but a constraint imposed by the input used by such schemes. 
The use of more information, not just the edges, may simplify the problem. One of the 
goals of our research is to develop a scheme that can group features of a flexible object 
under a variety of settings that is robust under changes in illumination. Occlusion and 
spurious data should also be considered, but they are not the main driver of our research. 

2.4     Stability and Scale 

In most images, interesting structures in different regions of the image occur at different 
scales. This is a problem for edge-based grouping because edge detectors are very sensitive 
to the "scale" at which they are applied. This presents grouping schemes two problems: it 
is not clear what is the scale at which to apply edge detectors and, in some images, not all 
edges of an object appear accurately at one single scale. Scale stability is in fact one of the 
most important sources of noise and spurious data mentioned above. 

Consider for example Figure 5 where we have presented the edges of a person at different 
scales. Note that there is no single scale where the silhouette of the person is not broken. 
For the purposes of recognition, the interesting edges are obviously the ones corresponding 
to the object of interest. Determining the scale at which these appear is not a trivial task. 

This problem has been addressed in the past [Zhong and Mallat 1990], [Lu and Jain 
1989], [Clark 1988], [Geiger and Poggio 1987], [Schunck 1987], [Perona and Malik 1987], 
[Zhuang, Huang and Chen 1986], [Canny 1985], [Witkin 1984] but edge detection has treated 
scale as an isolated issue, independent of the other edges that may be involved in the object 
of interest. We believe that the stability and scale of the edges should depend on the region 
that they belong to and not solely on the discontinuity that gives rise to them. The scheme 
that we will present looks for the objects directly, not just for the individual edges. This 
means that in our research we address stability in terms of objects (not edges). In fact, our 
scheme commits to one scale which varies through the image; usually it varies also within 
the object. This scale corresponds to that of the object of interest chosen by our scheme. 

3     Color, Brightness Or Texture? 

The perceptual organization scheme presented in this paper includes color, brightness 
and texture. We decided to implement it on color first, without texture or brightness. 
Color based perceptual organization (without the use of other cues) is indeed possible for 
humans since two adjacent untextured surfaces viewed under iso-luminant conditions can 
be segmented. (Although the human visual system has certain limitations in iso-luminant 
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Figure 5: Edges computed at six different scales. Note that the results are notably 
different. Which scale is best? Top six: Image of a person. Note that some of the edges 
corresponding to the legs are never found. Bottom six: Blob image. 

displays, e.g.  [Cavanaugh 1987].) And, as we will discuss later in the paper, color is also 
useful when there are brightness changes. 

Under normal conditions, color is a perceived property of a surface that depends mostly 
upon surface spectral reflectance and very little on the spectral characteristics of the light 
entering our eyes. It is therefore useful for describing the material composition of a surface 
(independently of its shape and imaging geometry) [Rubin and Richards 1981]. Lambertian 
color is indeed uniform over most untextured physical surfaces, and is stable in shadows, 
and under changes in the surface orientation or the imaging geometry. In general it is more 
stable than texture or brightness.   It has long been known that the perceived color (or 

7 



intensity) at any given image point depends on the light reflected from the various parts 
of the image, and not only on the light at that point. This is known as the simultaneous- 
contrast phenomena and has been known at least since E. Mach reported it at the beginning 
of the century. [Marr 1982] suggests that such a strategy may be used because one way 
of achieving some compensation for illuminance changes is by looking at differences rather 
than absolute values. According to this view, a surface is yellow because it reflects more 
"yellow" light than a blue surface, and not because of the absolute amount of yellow light 
reflected (of which the blue surface may reflect an arbitrary amount depending on the 
incident light). 

The exact algorithm by which humans compute perceived color is still unclear. Our 
scheme only requires a rough estimate of color which is used to segment the image, see 
Figure 6. We believe that perceived color should be computed at a later stage by a process 
similar to the ones described in [Helson 1938], [Judd 1940], [Land and McCann 1971]. 
This model is in line with the ones presented in [Subirana-Vilanova and Richards 1991] 
and [Jepson and Richards 1991] which suggest that perceptual organization is a very early 
process which precedes most early visual processing. In our images, color is entered in the 
computer as a "color vector" with three components: the red, green, and blue channels 
of the video signal. Our scheme works on color differences <Se between pairs of pixels c 
and CR. The difference that we used is defined in equation 1 and was taken from [Sung 
1991] (® denotes the vector cross product operation) and responds very sensitively to color 
differences between similar colors. 

\c (?) CRI 
50(c) = 1 - ^f (1) 

\C\\CR\ 

This similarity measure is a decreasing function with respect to the angular color difference. 
It assigns a maximum value of 1 to colors that are identical to the reference "ridge color", 
CR, and a minimum value of 0 to colors that are orthogonal to CR in the RGB vector space. 
The discriminability of this measure can be seen intuitively by looking at the normalized 
image in Figure 6. The exact nature of this measure is not critical to our algorithm. What 
is important is that when two adjacent objects have different perceived color (in the same 
background) this measure is positive4. Many other measures have been proposed in the 
literature and they could be incorporated in our scheme. 

What most color similarity measures have in common is that they are based on vector 
values and cannot be mapped onto a one-dimensional field [Judd and Wyszecki 75]5. This 
makes color perception different from brightness from a computational point of view since 

4 Note that the perceived color similarity among arbitrary objects in the scene will obviously not corre- 
spond to this measure. Specially if we do not take into account the simultaneous-contrast phenomena 

5Note that using the three channels, red, green and blue independently works for some cases. However it 
is possible to construct cases in which it does not as when an object has two discontinuities, one in the red 
channel only and the other in one of the other two channels only. In addition, the perceived similarity is not 
well captured by the information contained in the individual chapels alone but on the combined measure. 
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Figure 6: The similarity measure described in Equation 1 is illustrated here for an 
image of a person. Left: Image. Center: Similarity measure, using as reference color, 
the color of the pixel located at the intersection of the two segments shown. Right: Plot 
of the similarity measure along the long segment using the same reference color. 

not all the one-dimensional techniques used in brightness images extend naturally to higher 
dimensions. 

4    Regions? What Regions? 

In the last two sections we have set forth an ambitious goal: Develop a perceptual orga- 
nization scheme that works on the image itself, without edges and using color, brightness, 
and texture information. 

• 

But what constitutes a good region? What "class" of regions ought to be found? Our 
work is based on the observation that many objects in nature (or their parts) have a common 
color or texture, and are long, wide, symmetric, and convex. This hypothesis is hard to 
verify formally, but it is at least true for a collection of common objects [Snodgrass and 
Vanderwart 1980] used in psychophysics. And as we will show, it can be used in our scheme 
yielding seemingly useful results. In addition, humans seem to organize the visual array 
using this type of principles as demonstrated by the Gestalt Psychologists [Wertheimer 
1923], [Koffka 1935], [Köhler 1940]. In fact, these were the starting point for much of the 
work in computer vision on perceptual organization for rigid objects. We use these same 
principles but in a different way: Without edges and with non-rigid shapes in mind. 

In the next section we describe some common problems in finding regions. To do so, 
we introduce a one dimensional version of "regions" and discuss the problems involved in 
this simplified version of the task. A scheme to solve the one dimensional version of the 
problem is discussed in Sections 6 and 7. This exercise is useful because both the problems 
and the solution encountered generalize to the two dimensional version, which is presented 
in Sections 8 and 9. 



5     Problems in Finding Brightness Ridges 

One way of simplifying the perceptual organization task is to start by looking at a one 
dimensional version of the problem. This is especially true if such a solution lends itself 
to a generalized scheme for the two dimensional problem. This would be a similar path 
to the one followed by most edge detection research. In the case of edge detection, the 
generally accepted one dimensional version of the problem is a step function (as shown in 
Figure 3). Similarly, perceptual organization without edges can be cast in one dimension as 
the problem of finding ridges similar to a hat (as shown in Figure 3). A hat is a good model 
because it has one of the basic properties of a region: it is uniform and has a discontinuity 
in its border. As we will see shortly, the hat model needs to be modified before it can reflect 
all the properties of regions that interest us. 

In other words, the one-dimensional version of the problem that we are trying to solve 
is to locate ridges in a one-dimensional signal. By ridge we mean something that "looks 
like" a pair of step edges (see Figure 3). A simple-minded approach is to find the edges in 
the image, and then look for the center of the two edges. This was the approach used in 
[Subirana-Vilanova 1990]. Another possibility is to design a filter to detect such a structure 
as in [Canny 1985], [Noble 1988]. This also was the essence of the brightness based approach 
used in [Subirana-Vilanova 1990]. 

However, there are a number of problems with using such filters as estimators for ridge 
detection. These problems are not particular to either scheme, but are linked to the nature 
of ridges in real images. Some of these problems are in fact very similar for color and for 
brightness images. The model of a ridge used in these schemes is similar to the one shown 
in Figure 3. This is a limited model since ridges in images are not well suited to it. Perhaps 
the most evident reason why such a model is not realistic is the fact that it is tuned to a 
particular scale, while, in most images, ridges appear at multiple and unpredictable scales. 
This is not so much of a problem in edge-detection as we have discussed in the previous 
sections, because the edges of a wide range of images can be assumed to have "a very similar 
scale". Thus, Canny's ridge detector works only on images where all ridges are of the same 
scale as is true in the text images shown in [Canny 1983] (see also Figures 17 and 18) and 
in the images used by [Subirana-Vilanova 1990]. 

Therefore, an important feature of a ridge detector is its scale invariance. We now 
summarize a number of important features that a ridge operator should have (see Figure 
7): 

• Scale: See previous paragraph. 

• Non-edgcness: The filter should give no response for a step edge.   This property is 
violated by [Canny 1985]. 

10 
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Figure 7: Left: Plot with multiple steps. A ridge detector should detect three ridges. 
Right: Plot with narrow valleys. A ridge detector should be able to detect the different 
lobes independently of the size of the neighboring lobes. 

• Multiple steps: The filter should also detect regions between small steps. These are 
frequent in images, for example when an object is occluding the space between two 
other objects. This complicates matters in color images because the surfaces are 
defined by vectors not just scalar values. 

• Narrow valleys: The operator should also work in the presence of multiple ridges even 
when they are separated by small valleys. 

• Noise: As with any operator that is to work in real images, tolerance to noise is a 
critical factor. 

• Localization: The ridge-detector output should be higher in the middle of the ridge 
than on the sides. 

• Strength: The strength of the response should be somehow correlated with the strength 
of the perception of the ridge by humans. 

• Large scales: Large scales should receive higher response. This is a property used by 
[Subirana-Vilanova 1990]'s scheme and is important because it embodies the prefer- 
ence for large objects (see also section 14). 

6     A Color Ridge Detector 

In the previous section we have outlined a number of properties we would like our ridge- 
detector to have. As we have mentioned, the Canny ridge-detector fails because, among 
other things, it cannot handle multiple scales. A naive way of solving the scale problem 
would be to apply the Canny ridge detector at multiple scales and define the output of the 
filter at each point as the response at the scale which yields a maximum value. This filter 
would work in a number of occasions but has the problem of giving a response for step 
edges (since the ridge-detector at any single scale responds to edges, so will the combined 
filter - see Figures 17 and 18). 

One can suppress the response to edges by splitting Canny's ridge operator into two 
pieces, one for each edge, and then combining the two responses by looking at the minimum 

11 
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Figure 8:   Left: Gaussian second derivative, an approximation to Canny's optimal ridge 
detector. Right: Individual one-dimensional masks used by our operator. 
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Figure 9:   Intuitive description of ridge detector output on flat ridge and edge. 

of the two responses. This is the basic idea behind our approach (see Figures 8 and 9). 
Figures 17 and 18 illustrate how our filter behaves according to the different criteria outlined 
before. The Figure also compares our filter with that of the second derivative of a gaussian, 
which is a close approximation to the ridge-filter Canny used. There are a number of 
potential candidates within this framework such as splitting a Canny filter by half, using 
two edge detectors and many others. We tried a number of possibilities on the Connection 
Machine using a real and a synthetic image with varying degrees of noise. Table 6 describes 
the filter which gives a response most similar to the inertia values and the tolerated length 
that one would obtain using similar formulas for the corresponding edges, as described in 
[Subirana-Vilanova 1990]. 
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VAR. EXPRESSION DESCRIPTION 

rraax 
Fs 

Fc 

Free Parameter (3) 

Free Parameter (8) 
Free Parameter (1/8) 

Gradient penalization coeff. 

Filter Side Lobe size coeff. 
Local Neighborhood size coeff. 

g(x) 
Smax 

Color gradient at location x. 
Max. color gradient in image. 

a 

Fca 

Size of Main Filter Lobe. 
Size of Side Filter Lobe. 
Reference Color Neighborhood 

c{x) 
cn(x) 

cr(x) 

[K(x) Q(x) B(x)]T 

c{x)l\c{x)\ 
r2 

rc« -IT— e  2CT? cn(x + r) dr 

Color vector at location x. 
Normalized Color at x. 

Reference Color at x 

FUr) 

,                   (r+cr)2 

Left Half of Filter 
(r+af 

0                                          otherwise 

?R(r) ?L(-r) Right Half of Filter 

TL{X) r-^+as)S®{cr{x),cn{x + r))TL{r) dr 

!a_tasS®{cr(x),cn{x + r))TR{r) dr 

Inertia from Left Half 

Inertia from Right Half 

1„{X) min/'T    ( T\    T.  1T\\                     ^ Inertia at location x (Scale a). 
(l+Vmax g^Jx ) 

l(x) 
a(max) 

Vcr max.(T(T(x)) 
a such that la(x) is maximized 

Overall inertia at location x. 

TL(X) 0                                             if rc < a(max) 

rc(ir — arccos(rc~^maa:'))       otherwise 

Tolerated Length 

(Depends on radius of curvature rc) 

Table 1:  Steps for Computing Directional Inertias and Tolerated Length.   Note that the 
scale <j is not a free parameter. 
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Our approach uses two filters (see profile in Figure 8), each of which looks at one side 
of the ridge. The output of the combined filter is the minimum of the two responses. Each 
of the two parts of the filter is asymmetrical, reflecting the fact that we expect the object 
to be uniform (which explains each filter's large central lobe), and that we do not expect 
that a region of equal size be adjacent to the object (which explains each filter's small side 
lobe to accomodate for narrower adjacent regions). In other words, our ridge detector is 
designed to handle narrow valleys. 

Handling steps and the extension to color are tricky because there is no clear notion 
of what is positive and what is negative in vector quantities. We solve this problem by 
adaptively defining a reference color at each point as the weighted average color over a 
small neighborhood of the point (about eight times smaller than the scale of the filter in 
the current implementation). Thus, this reference color will be different for different points 
in the image and scalar deviations from the reference color are computed as defined in 
section 3. 

7     Filter Characteristics 

This Section examines some interesting characteristics of our filter under noiseless and 
noisy operating conditions. We begin in Section 7.1 by deriving the filter's optimum scale 
response and its optimum scale map for noiseless ridge profiles, from which we see that 
both exhibit local output extrema at ridge centers. Next, we examine our filter's scale 
(Section 7.2) and spatial (Section 7.3) localization characteristics under varying degrees of 
noise. Scale localization measures the closeness in value between the optimum mask size at 
a ridge center and the actual width of the ridge. Spatial localization measures the closeness 
in position between the filter's peak response location and the actual ridge center. We shall 
see that both the filter's optimum scale and peak response location remain remarkably 
stable even at noticeably high noise levels. Our analysis will conclude with a comparison 
with Canny's ridge detector in Section 7.4 and experimental results in Section 11. 

For simplicity, we shall perform our analysis on scalar ridge profiles instead of color 
ridge profiles. The extension to color is straightforward if we think of the reference color 
notion and the color similarity measure of equation 1 as a transformation that converts 
color ridge profiles into scalar ridge profiles. 

We shall be using filter notations similar to those given in Table 6. In particular, a 
denotes the main lobe's width (or scale), Fs denotes the filter's main lobe to side lobe width 
ratio, and TL(r,am,as) a left-half filter with main lobe size <rm, side lobe size as = crm/Fs, 
and whose form is a normalized combination of two Gaussian first derivatives. At each 
point on a ridge profile, the filter outputs, by definition, the maximum response for mask 
pairs of all scales centered at that point. 
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(a)                                       (b) 

Figure 10:    Half-mask configurations for computing the optimum scale ridge response 
of our filter. See text for explanation. 

7.1     Filter Response and Optimum Scale 

Let us first obtain the single scale filter response for the two half-mask configurations in 
Figure 10. Figure 10(a) shows an off-center left-half mask whose side lobe overlaps the ridge 
plateau by 0 < d < 2a/Fs and whose main lobe partly falls off the right edge of the ridge 
plateau by 0 < / < 2a. The output in terms of mask dimensions and offset parameters is: 

i—(<r+d) a rc-f a fa a 
Oa(dJ)   =     / sfL(r,a,—)dr+ TL(r,a,—)dr + sTL(r,a,T)d 

{Fss - l)(e"2 - 1) 

-(!-«) [Fs(l-e  ~£^) + (e 
_(2£-üi > 

2<T2     -e  2) (2) 

A value of / greater than d indicates that the filter's main lobe (ie. its scale) is wider 
than the ridge and vice-versa. Notice that when d = / = 0, we have a perfectly centered 
mask whose main lobe width equals the ridge width, and whose output value is globally 
maximum. 

Figure 10(b) shows another possible left-half mask configuration in which the main lobe 
partly falls outside the left edge of the ridge plateau by 0 < / < 2a. Its output is: 
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R 

Figure 11:   Mask-pair configuration for computing the all scales optimum ridge response 
of our filter. See text for explanation. 

O, if)    =     /       ,    sFL(r,a,—)dr+ TL(r,a,—)d 
J
-(°+T:) I

'
S J-(a-d) Fs 

=    -±=\(F,s-l)(e-2-l)-(l-s)(l-e-&) 
y l'K L 

(3) 

The equivalent right-half mask configurations are just mirror images of the two left-half 
mask configurations, and have similar single scale ridge response values. 

Consider now the all scales optimum filter response of a mask pair, offset by h from 
the center of a ridge profile (see Figure 11). The values of d and / in the figure can be 
expressed in terms of the ridge radius (i?.), the filter size (a) and the offset distance (/;) as 
follows: 

d   =    R+h-o 

f   =    a+h-R 

Notice that the right-half mask configuration in Figure 11 is exactly the mirror image of 
the left-half mask configuration in Figure 10(a). 

Because increasing a causes / to increase which in turn causes the left-half mask output 
to decrease, while decreasing a causes d to increase which in turn causes the right-half mask 
output to decrease, the all scales optimum filter response, Opt(/i, i?), must therefore be from 
the scale, a0, whose left and right half response values are equal.  Using the identities for 
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d and / above together with the half-mask response equations 2 and 3, we get, after some 
algebriac simplification: 

Opt(/i,Ä) 
(a0+h-R)2 

(Fss-l)(e~2-l)-(l-s)(l-e       >°l     ) 

where the optimum scale, a0, must satisfy the following equality: 

F,(l - e 
F2 (R+h-a-p)2 

~) + (e~ 

(a0-h+R)2 (vo+h-R)2 

-0 = (i 

(4) 

(5) 

The following bounds for a0 can be obtained: 

R + h 

i + i?MrfF 
< a0 < (R + h). (6) 

• 

For our particular implementation, we have Fs = 8 which gives us: 0.9737(Ä + h) < a0 < 
(R + h). Since h > 0, Equation 6 indicates that the optimum filter scale, cr0, is a local 
minimum at ridge centers where h = 0. 

To show that the all scales optimum filter response is indeed a local maximum at ridge 
centers, let us assume, using the inequality bounds in Equation 6, that a0 = k(R + h) for 
some fixed k in the range: 

i + fMp-fc-) 
< K < 1. 

Equation 4 becomes: 

0pt(/i,J2) 
((l + k)h-(l-k)R)2 

(Fss - l)(e-2 -!)-(!- s)(l - e       ^2(R+V2      ) (7) 

Differentiating the above equation with respect to h, we see that 0pt(/i, R) indeed decreases 
with increasing h for values of h near 0. 

7.2     Scale Localization 
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a0 >R 

a„ =R <*„<R 

Figure 12: Mask configurations for scale localization analysis, (a) A radius R ridge 
profile with noise to signal ratio n0/(l — s). (b) A mask whose scale equals the ridge 
dimension, (c) A mask whose scale is larger than the ridge dimension, (d) A mask 
whose scale is smaller than the ridge dimension. 

We shall approach the scale localization analysis as follows (see Figure 12(a)): Consider 
a radius R ridge profile whose signal to noise ratio is (1 — s)/n0, where (1 — s) is the height 
of the ridge signal and n2

0 is the noise variance. Let d = \R - a0\ be the size difference 
between the ridge radius and the optimum filter scale at the ridge center. We want to 
obtain an estimate for the magnitude of d/R, which measures the relative error in scale due 
to noise. 

• 

Figures 12(b) (c) and (d) show three possible left-half mask configurations aligned with 
the ridge center. In the absence of noise (ie. if n0 = 0), their respective output values (Os) 
are: 

(a = R) :Os=     f\    sTL(r,a^)dr+ T TL(r,a,~)dr 

1 -2 (l-e-')(l-sFs) 

(a = R + d) : Os(d)    = 

2TT 

-(<r-d) 
\ sTL(r,o-, — )dr+ / fL(r,a, — )dr 

J-(<T+%) 's J-(cr-d) Fs 

+ /      sTL(r,(T, — )dr 
Ja-d rs 

-^\(l-e-2)(\-sFs) 
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 u  2d        _ "  

+(1 - s)(e~2 + e  2(R+d)2 - e~2eR+*e  2(*+d)2 - 1) 

r-(a+d) 
sTL{r,o,—)dr + / ?L(r,a, — )dr 

•{?+¥■) *s J-(<T+d) *s 

/2TT 
(1 - e"2)(l - sFs) + (1 - s)Fs(e  '(*-<02 - 1) (8) 

Let us now compute On, the noise component of the filter output. Since the noise signal 
is white and zero mean, we have E[0n] = 0, where E[x] stands for the expected value of x. 
For noise of variance n2, the variance of On is: 

/a u roo u 
n2

0Tl(r,a, — )dr* n2
0F

2
L(r,a,—)dr 

■(v + T?) *s J-°° *s 

1 + Fs _ 1 + Fs 

8ay/n ~ 8Ry/ir' 
(9) 

or equivalently, the standard deviation of On is: 

SD[On] = 
H  +  Fs 

8Ry/if' 
(10) 

A very loose upper bound for d/R can be obtained by finding d, such that the noiseless 
response for a size a = R + d (or size a = R — d) mask is within one noise output standard 
deviation of the optimum scale response (ie. the response for a mask of size a0 = R). We 
examine first, the case when a — R + d. Subtracting Os for a = R from Os(d) for a = R + d 
(both from the series of equations 8) and equating the difference with SD[0„], we get: 

 a  2d —  
(1_ S)(l-  e~2 +e     2(fl+d)2   _e-2gR+de     2(B+d)2) 

11 +F, 

8£0r' 

which, after some algebra and simplifying approximations, becomes: 

d/R 
f2K n0 

1 - V2K 

where K = - In   1 - 
n0 

si — e -2 

II+ F. 
8Ryß 

8R^/TT, 
(0<I?-<(l-e-)(l-e-*W^) 

(11) 
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Figure 13: Relative scale error (d/R) as a function of noise to signal ratio (n0/(l — s)) 
for (a) Equation 11 where a0 > R, and (b) Equation 12 where a0 < R. For both graphs, 
Fs = 8, top curve is for R = 10, middle curve is for R = 30 and bottom curve is for 
R = 100. 

Figure 13(a) graphs d/R as a function of the noise to signal ratio n0/(l -s). We remind 
the reader that our derivation is in fact a probabilistic upper bound for d/R. For d/R to 
exceed the bound, the a = R + d filter must actually produce a combined signal and noise 
response, greater than that of all the other filters with sizes from a = R to a = R + d. 

A similar analysis for the a = R — d case yields (see Figure 13(b) for plot): 

d/R 

In    1 - 
1 + FS 

1-sV SF^Ryft 
(12) 

7.3     Spatial Localization 

Consider the radius R ridge in Figure 14 whose signal to noise ratio is (1 - s)/n0. As 
before, (1 — s) is the height of the ridge signal and n2

0 is the noise variance. Let h be the 
distance between the actual ridge center and the peak location of the filter's all scales ridge 
response. Our goal is to establish some magnitude bound for h/R that can be brought 
about by the given noise level. 

To make our analysis feasible, let us assume, using Equation 6, that the optimum filter 
scale at distance h from the ridge center is o0 = R + h. Notice that for our typical values 
of Fs, the uncertainty bounds for a0 is relatively small. The optimum scale filter output 
without noise is therefore: 

20 



Position 

h l.u- 

R 
0.8' 

0.6' 

0.4 

0.2 

n n 
0.0 0.3 1.0 1.5 

Noise/Signal ratio 

Figure 14: Left: Mask configurations for scale localization analysis. An all scales 
filter response for a radius R ridge profile with noise to signal ratio n0/(l - s). h is the 
distance between the actual ridge center and the filter response peak location. Right: 
Relative spatial error (h/R) as a function of noise to signal ratio (n0/(l - s)), where 
Fs = 8, top curve is for R = 10, middle curve is for R = 30 and bottom curve is for 
R = 100. See Equation 15.   

• Opt(/i, R) (Fss - l)(e"2 - 1) - (1 - s)(l - e   **+^ ) (13) 

and the difference in value between the above and the noiseless optimum scale output at 
ridge center is: 

Opt(0, R) - OptO, £)»(!- a)(l - e   2(*+")2). (14) 

As in the scale localization case, we obtain an estimate for h/R by finding h such that 
the difference in Equation 14 equals one noise output standard deviation of the optimum 
scale filter at ridge center (see Equation 10). We get: 

(1 - s)(l - e  2(«+")2 ) = n0 
II+ F, 

8Av^' 

which eventually yields (see Figure 14 for plot): 
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W   =    -V^T= (0<^-<(l-e-2h/^) 
' y/2-y/K y    - l-s      y 'yi + Fs' 

w„„e:       K=-Jl-£-tJLjig\. (15) 

7.4     Scale and Spatial Localization Characteristics of the Canny Ridge Opera- 
tor 

We compared our filter's scale and spatial localization characteristics with those of a 
Canny ridge operator. This is a relevant comparison because the Canny ridge operator 
was designed to be optimal for simple ridge profiles (see [Canny 1985] for details on the 
optimality criterion). The normalized form of Canny's ridge detector can be approximated 
by the shape of a scaled Gaussian second derivative: 

C(r,a)=^L-(a2-r2)e-£. (16) 

We begin with scale localization.   For a noiseless ridge profile with radius R and height 
(1 - s), the optimum scale (a = R) Canny filter response at the ridge center is: 

Oa{o = R)=yJ^{\-s)e-*. (17) 

Similarly, the ridge center filter response for a mis-matched Canny mask (<r = R + d) is: 

2     R 
Os(a = R + d)= ,/-——-(1 - s)e   *(*+*)*, 

V 7T R + a 

where the scale difference, d, can be either positive or negative in value. 

We want an estimate of d/R in terms of the noise to signal ratio. Consider now the 
effect of white Gaussian noise (zero mean and variance n2

0) on the optimum scale Canny 
filter response. The noise output standard deviation is: 

Ü SD[On]    =    .//     nlC2(r,a = R)dr 
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=    n, 
°V8iV^' (18) 

Performing the same scale localization steps as we did for our filter, we get: 

nn 
8Ry^r       V 7T 

2 j [~2 P R2 

■K R + d 

which reduces to the following equation that implicitly relates d/R to ^ 

'16Ä 
1-5    y 3^ 

e   2 
£ 

R + d 
e     2(R+d)2 (19) 

For spatial localization, we want an estimate of h/R in terms of f^- where h is the 
distance between the actual ridge center and the all scales Canny operator peak output 
location. At distance h from the ridge center, the optimum Canny mask scale (a0) is 
bounded by: 

N 
1   _ p     2(R-h)2 

^ + h^-2Rh1 4Rh     <g0< 
1 + e     2(R-h)2 \ 

R2 + h2 - 2Rh 
1  _ e     2(R+h)2 

1 + e   2(R+h)2 

and the noiseless optimum scale filter response is: 

0,(h) 
2 R2+h2 

V2na0 
- s)e     2<To -Kcoshf—-r-) - hsmh(—r) 

Setting Os(0) - Os(h) = SD[On], we arrive at the following implicit equation relating 
h/R and ra0/(l - s): 

AR 

1-5 y 3V^ 
_1 

e   2 -e     -o    (RcoSh(—)-hsmh(—) (20) 

where CTo « \]R2 + h?-2Rh{l-e   2$)/(l + e-i$) (valid for smaU Ä/Ä values). 

We see from Figures 15 and 16 that at typical Fs ratios, our filter's scale and spatial 
localization characteristics are comparable to those of the Canny ridge operator. 

23 



0.2 0.3 0.4 
Noise/Signal ratio 

R = 10 

0.3 0.4 
Noise/Signal ratio 

R = 30 

0.3 0.4 
Noise/Signal ratio 

R = 100 

Figure 15: Comparison of relative scale error (d/R) as a function of noise to signal 
ratio (n0/(l - s)) between our filter (a > R case) and the Canny ridge filter. See 
Equations 11 and 19. Top Left: R = 10. Top Right: R = 30. Bottom: R = 100. For 
each graph, curves from top to bottom are those of: Fs = 16, Fs = 8, Fs = 4, Fs = 2, 

and Canny.  

8     Finding 2D Skeletons Using Directional ID Ridge Detectors 

The scheme that we present in this paper is an extension of Curved Inertia Frames (CIF), 
a brightness-based segmentation scheme presented in [Subirana-Vilanova 1990], which in 
turn is an extension of an edge-b<\sed perceptual organization scheme presented in the same 
paper. We choose this scheme for two reasons, first it is the only existing scheme that 
can compute global regions directly on the image without imposing a three-dimensional 
representation of the data. Second, we have been able to overcome a number of problems 

in the scheme making it is useful for a large class of images. 

[Subirana-Vilanova 1990]'s scheme (and ours) proceeds in three stages. In the first 
one, it computes two local measures at each point p for a number of orientations 0: the 
inertia value l(p,0) and the tolerated length T(p,6). These two local values are based on 
the output of elongated gabor filters and are used to associate a saliency measure to each 

curve C(t) in the image plane as defined in equation 21. Were the curve is assumed to be 
parameterized between 0 and L. 1(1) (T(/)) is the inertia value (tolerated length) at the 
point with parameter / and with the orientation of the curve at that point, and p and a 

are suitable constants. 
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Figure 16: Comparison of relative spatial error (h/R) as a function of noise to signal 
ratio (n0/(l - s)) between our filter and the Canny ridge filter. See Equations 15 and 
20. Top Left: R = 10. Top Right: R = 30. Bottom: R - 100. For each graph, the 
Canny curve is the top curve between n0/(l - s) = 0 and n0/(l — s) = 0.5. The other 
curves from top to bottom are for: Fs = 16, Fs = 8, Fs = 4 and Fs = 2. 

SL = f0
LT{l)pI°^dtdl (21) 

• 

In the second stage, the scheme computes the skeleton which yields the maximum 
saliency using an extension of the network introduced by [Shashua and Ullman 1988]. In 
fact, the form of equation 21 closely matches what the network can compute. The inertia 
value and the tolerated length can be used in the second stage using other schemes such as 
[Kass, Witkin and Terzopoulos 88], [Zucker, Dobbins and Iverson 89], and [Pizer, Burbeck, 
and Coggins 1993]. 

The scheme favors curves which are long, smooth (according to the associated tolerated 
length values) and central to the shape (i.e. which have high inertia values). This second 
stage yields the skeleton sketch a representation of the potential skeletons in the image. See 
[Subirana-Vilanova 1990], [Subirana-Vilanova 1991] for more details. 

In the third stage, the scheme computes a succession of individual curves (or skeletons) 
and the corresponding perceptual groups by growing outward from the skeletons. 
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In this section we will derive a class of dynamic programming algorithms that find 
curves in an arbitrary graph that maximize a certain quantity. In the next sections we will 
apply these algorithms to finding long and smooth ridges in the inertia surfaces, which are 
the output of our one dimensional filter when applied at different orientations. [Mahoney 
1987] showed that long and smooth curves in binary images are salient in human perception 
even if they have multiple gaps and in the presence of other curves. [Sha'ashua and Ullman 
1988] devised a saliency measure and a dynamic programming algorithm that can find such 
salient curves in a binary image (see also [Ullman 1976]). We build on their work and 
show how their ideas can be extended to deal with arbitrary surfaces. In this section we 
will examine their computation in a way geared at demonstrating that the kind of saliency 
measures that can be computed with the network is very limited. The actual proof of this 
will be given in Section 10. 

We define a directed graph with properties G = (V, E,PE, PJ) as a graph with a set of 
vertices V = {v{} ; a set of edges E — {cjj = (i>;, vj) | u,-, VJ £ V}; a function P# : E —> 9i 
that assigns a vector pt of properties to each edge; and a function Pj : J —*■ §? that assigns 
a vector pj of properties to each junction where a junction is a pair of adjacent edges (i.e. 
any pair of edges that share a vertex) and J is the set of all junctions. We will refer to a 
curve in the graph as a sequence of connected edges. We assume that we have a saliency 
function S that associates a positive integer S(C) with each curve C in the graph. This 
integer is the saliency or saliency value of the curve. The saliency of a curve will be defined 
in terms of the properties of the elements (vertices, edges and junctions) of the curve. 

Our problem is to find a computation that finds for every point and each of its connecting 
edges, the most salient curve starting at that point with that edge. This includes defining 
a saliency function and a computation that will find the salient curves for that function. 
The applications that will be shown here work with a 2 dimensional grid. The vertices are 
the points in the grid and the edges the elements that connect the different points in the 
grid. The junctions will be used to include in the saliency function properties of the shape 
of the curve such as curvature. 

The computation will be performed in a locally connected parallel network with a 
processor peti7- for every edge e,-j. The processors corresponding to the incoming edges of 
a given vertex will be connected to those corresponding to the connecting edges at that 
vertex. We will design the computation so that we know at iteration n what is the saliency 
of the most salient curve of size n for every edge. This provides a constraint in the invariant 
of the algorithm that we are seeking that will guide us to the final algorithm. In order for 
the computation to have some computing power each processor pe,\tJ must have at least one 
state variable that we will denote as s,tj. Since we want to know the saliency of the most 
salient curve of length n starting with any given edge, we will assume that, at iteration 
n, 6,-j contains that value for that edge. Observe that having only one variable looks 
like a big restriction, however, we show in Section 10 that allowing more state variables 
does not add any power to the possible saliency functions that can be computed with this 
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network. Since the saliency of a curve is defined only by the properties of the elements in 
the curve, it cannot be influenced by properties of elements outside the curve. Therefore 
the computation to be performed can be expressed as: 

sitj(n + 1) = MAX{J"(n+ l,pe,pj,a,-ij(n),5iijfc(n)) |    (j, k) G E} 

Sij(0) = ^(0,Pe,Pi,0,0) (22) 

where T is the function that will be computed in every iteration and that will lead to the 
computed saliency. Observe that given T, the saliency value of any curve can be found by 
applying T recursively on the elements of the curve. 

We are now interested in what types of saliency functions 5* we can use and what type of 
functions T are needed to compute them such that the value obtained in the computation 
is the maximum for the resulting saliency measure S. Using contradiction and induction 
we conclude that a function T will compute the most salient curve for all possible graphs 
if and only if it is monotonically increasing in its last argument. That is, if and only if: 

Vp,x, y x < y    —► F(p, x) < T{p, y), (23) 

where p is used to abbreviate the first four arguments of T. 

What type of functions T satisfy this condition? We expect them to behave freely as p 
varies. And when SJJ. varies, we expect T to change in the same direction with an amount 
that depends on p. A simple way to fulfill this condition is with the following function: 

T{p,x) = f{p) + g{x)*h{p) (24) 

where /, g and h are positive functions and g is monotonically increasing. 

We now know what type of function T we should use but we do not know what type of 
saliency measures we can compute. Let us start by looking at the saliency Si that we would 
compute for a curve of length i. For simplicity we assume that g is the identity function: 

• Iter. 1: Si = /(pi,2) 
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• Iter. 2: S2 = Si + /(p2,3) * fi(Pi,=) 

• Iter. 3: 53 = 52 + /(p3)4) * />(Pi,2) * ^(p2?3) 

• Iter. 4: 54 = S3 + /(p4,5) * MPi,2) * ^(p2,3) * MP3,4) 

• Iter. i: 5,- = 5,-_i + f(pi,i-,) * Yll=\ i MPWH-i) = 
E/=i/(p/,/-1)*m:=r1Mpw-+1)- 

At step n, the network will know about the most salient curve of length n starting from 
any edge. Recovering the most salient curve from a given point can be done by tracing the 
links chosen by the processors (from Equation 22). 

9     Finding Long And Smooth Ridges 

In this section, we will show how the network defined in the previous section can be 
used to find frames of reference using the inertia surfaces and the tolerated length as defined 
in the previous sections. The directed graph with properties that defines the network has 
one vertex for every pixel in the image and one edge connecting it to each of its neighbors 
thus yielding a locally connected parallel network. This results in a network that has eight 
orientations per pixel. The number of orientations per pixel can be increased to improve 
the accuracy of the output. 

The value computed is the sum of the /(p;,j)'s along the curve weighted by the product 
of the /j(p;j)'s. Using 0 < h < 1 we can ensure that the total saliency will be smaller than 
the sum of the /'s. One way of achieving this is by using h = \/k or h = exp(—k) and 
restricting k to be larger than 1. The /'s will then be a quantity to be maximized and the 
&'s a quantity to be minimized along the curve. In our skeleton network (presented in the 
next section), / will be the inertia measure and k will depend on the tolerated length and 
will account for the shape of the curve so that the saliency of a curve is the sum of the 
inertia values along a curve weighted by a number that depends on the overall smoothness 
of the curve. In particular, the functions /, g and h (see Equation 24) are defined as: 

•   /(p) = /(Pe) =!(*), 

• g{x) = x 

and h(p) = h(Pj) = paT(Pjyx']. 

28 



• 

a, which we call the circle constant, scales the tolerated length, and it was set to 4 in the 
current implementation (because 4radiusir/2 is the length of the perimeter of a circle). p, 
which we call the penetration factor, was set to 0.5 (so that inertia values "half a circle" 
away get factored down by 0.5). And lemt is the length of the corresponding element. Also, 
s,-j(0) = 0 (because the saliency of a skeleton of length 0 should be 0). 

With this definition the saliency value assigned to a curve of length L is: 

which is an approximation of the continuous value given in Equation 25 below. SL is the 
saliency of a parameterized curve C(u), and l(u) and T(w) are the inertia value and the 
tolerated length respectively at point u of the curve. 

SL = f0
Ll{l)pti^mdtdl (25) 

The obtained measure favors curves that he in large and central areas of the shape and 
that have a low overall internal curvature. The measure is bounded by the area of the 
shape; e.g. a straight symmetry axis of a convex shape will have a saliency equal to the 
area of the shape. In the next section we will present some results showing the robustness 
of the scheme in the presence of noisy shapes. 

Observe that if the tolerated length T(t) at one point C(t) is small then fQ a7Lx dt is 

large so that pJo aT0) tdl becomes very small (since p < 1) and so does the saliency for the 
curve SL- Thus, a small a or p penalize curvature favoring smoother curves. 

10     Limitations of the Dynamic Programming Approach 

In this section we show that the set of possible saliency measures that can be computed 
with the network defined in the previous sections is limited. 

Proposition 1 The use of more than one state variable in the saliency network defined 
in the previous sections does not increase the set of possible saliency functions that can be 
computed with the network. 
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Proof: The notation used in the proof will be the one used in the previous sections. We 
will do the proof for the case of two state variables, the generalization of the proof to more 
state variables follows naturally. Assume then, that each edge has a saliency state variable 
Sij and an auxiliary state variable a,-j and two functions to update the state variables: 
shj(n + 1) = MAXkT(p1shk(n).aJ%k{n)) and ahj(n + 1) = G{p,sJik{n),aJtk{n)). We will 
show that for any pair of functions T and Q either they can be reduced to one function or 
there is a. network for which they do not compute the optimal curves. 

If T does not depend on its last argument ahk then the decision of what is the most 
salient curve is not affected by the introduction of more state variables so we can do without 
them. Observe that we might still use the state variables to compute additional properties 
of the most salient curve without affecting the actual shape of the computed curve. 

If T does depend on its last argument then there exists some p, x, y and w £ 5Fi 
such that: T(p,y,x) < T(p,y,w). Assuming continuity this implies that there exists 
some e > 0 such that: T(p, y - e ,x) < T{p,y,iv). Assume now two curves of length 
n starting from the same edge Cjj such that slij(n) = y, alij(n) = x, s2i-)j(n) = y — e 
and a2,j7(n) = y. If the algorithm where correct at iteration n it would have computed 
the values slij(n) = y, ol,j(r?) = x for the variables 5,-j and a,-j. But then at iteration 
n + 1 the saliency value computed for an edge eh,i would be s^j = T(p, y — e ,x) instead of 
T(p,y,w) that corresponds to a curve with a higher saliency value. □. 

11     Results 

We have tested our scheme (filter + network) extensively, Figures 17 and 18 show that 
our filter produces sharper and more stable ridge responses than the second derivative of 
a gaussian filter, even when working with the notion of reference colors for color ridge 
profiles. First, our filter localizes all the ridges for a single ridge, for multiple or step ridges 
and for noisy ridges. The second derivative of the gaussian instead fails under the presence 
of multiple or step ridges. Second, the scale chosen by our operator matches the underlying 
data, closely while the scale chosen by the second derivative of the gaussian does not match 
the underlying data (see Figures in Section 7). This is important because the scale is 
necessary to compute the Tolerated Length which is used in the second stage of our scheme 
to find the Curved Inertia Frames of the image. And third, our filter does not respond to 
edges while the second derivative of the gaussian does. 

In the previous paragraph, we have discussed the one-dimensional version of our filter. 
The same filter can be used as a directional ridge operator for two-dimensional images. 
Figure 21 shows the directional output (aka inertia surfaces) of our filter on four images. 
The two-dimensional version of the filter can be used with different degrees of elongation. In 
our experiments we used one pixel width to study the worst possible scenario. An elongated 
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Figure 17: First column: Different input signals. Second column: Output given by 
second derivative of the gaussian. Third column: Output given by second derivative of 
the gaussian using reference color. Fourth column: Output given by our ridge detector. 
The First, Second, Fourth and Sixth rows are results of a single scale filter application 
where a is tuned to the size of the largest ridge. The Third, Fifth and Seventh rows are 
results of a multiple scale filter application. Note that no scale parameter is involved in 
any multiple-scale case. 
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of roof and sinusoid color profiles. Bottom: Multi-scale output given by color convolution of 
our non-linear mask with the color profiles. Even though our filter was designed to detect 
flat regions, it can also detect other type of regions. 

1 
"1 1 :  

so        loo       iso      Mn       250       so 
faitin 

Hue U Df Color Shoulder Profil« 

1 
 |  

Hui U of Color Shoulder Profile 

so       too      w      wo      jso      ioo 
i 

NOB Linear Filler 

(0 I0O I JO        200        210 300 
2 

Gamslan Second Derivative 

so       IOO      no      loo      ijo      joe 
X 

Non Linear Filter 

Figure 19: First column: Multiple step input signal. Second column: Output given by 
second derivative of the gaussian. Third column: Output given by second derivative of 
the gaussian using reference color. Fourth column: Output given by our ridge detector. 
The first row shows results of a single scale filter application where a is tuned to the size 
of the largest ridge. The second row shows results of a multiple scale filter application. 
Note that no scale parameter is involved in multiple-scale case. 
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Figure 20: Four images: Sweater image, Ribbons image, Person image and Blob image. 
See inertia surfaces for these images in Figure 18 and the Canny edges at different scales 
for the Person and Blob image in Figure 5. Note that our scheme recovers the Person 
and blob at the right scale, without the need of specifying the scale. 

filter would smooth existing noise; however, large scales are not good because they smooth 
the response near discontinuities and in curved areas of the shape (this can be overcome 
by using curved filters [Malik and Gigus 1991]). 

The inertia surfaces and the tolerated length are the output of the first stage of our 
scheme. In the second stage we use these to compute the Curved Inertia Frames (see 
[Subirana-Vilanova 1990]) as shown in Figures 23, 24, 25, 26, and 27. These skeleton 
representations are used to grow the corresponding regions by a simple region growing 
process which starts at the skeleton and proceeds outward (this can be though of as a 

33 



• 

Figure 21: Inertia surfaces for three images at four orientations (clockwise 12, 1:30, 3 
and 4:30). Note that exactly the same lisp code (without changing the parameters) was 
used for all the images. From Left to Right:   Shirt image. Ribbon image, Blob image. 

Figure 22: Inertia surfaces for the person image at four orientations. Note that exactly 
the same lisp code (without changing the parameters) was used for these images and 
the others shown in this paper. 
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Figure 23: Most salient Curved Inertia Frame obtained in the shirt image. Note that 
our scheme recovers the structures at the right scale, without the need of changing any 
parameters. Left: Edge map of shirt image without most salient curved inertia frame. 
Right: With most salient curved inertia frame superimposed.   

Figure 24: Blob with skeleton obtained using our scheme in the blob image. Note that 
our scheme recovers the structures at the right scale, without the need of changing any 
parameters.   
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Figure 25:     Pants region obtained in person image.   The white curve is the Curved 
Inertia Frames from which the region was recovered. 

visual routine [Ullman 1984] operating on the output of the dynamic programming stage 
or skeleton sketch [Subirana-Vilanova 1990]). This process is very stable because it can use 
global information provided by the frame such as the average color or the expected size of 
the enclosing region. See Figures 23, 24, 25, 26, and 27 for some examples of the regions 
that are obtained. Observe that the shape of the regions is accurate, even at corners and 
junctions. Note that each region can be seen as an individual test since the computations 
performed within it are independent of those performed outside it. 

12     Discussion: Image brightness is necessary 

We have implemented our scheme for color on the Connection Machine. The scheme 
can be extended naturally to brightness and texture (using the now popular filter-based 
approaches applied to the image, see [Knuttson and Granlund 1983], [Turner 1986], [Fogel 
and Sagi 1989], [Malik and Perona 1989], [Bovik. Clark and Geisler 1990], [Thau 1990]). 
The more cues a system uses, the more robust it will be. In fact, image brightness is crucial 
in some situations because luminance boundaries do not always come together with color 
boundaries (e.g. cast shadows). 

But, should these different schemes be applied independently? Consider a situation in 
which a surface is defined by an iso-luminant color edge on one side and by a brightness 
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Figure 26:     Four regions obtained for the person image.   The white curves are the 
Curved Inertia Frames from which the regions were recovered. 

edge (which is not a color edge) on the other. Our scheme would not recover this sur- 
face because the two sides of our filter would fail (on one side for the brightness module 
and on the other for the iso-luminant one). We believe that a combined filter should 
be used to obtain the inertia values and the tolerated length in this case. The sec- 
ond stage would then be applied only to one set of values. Instead of having a filter 
with two sides, our new combined filter should have four sides. Two responses on each 
side, one for color Rc^ and one for brightness R^i, the combined response would then be 

min(max(Rbjeft, Rc,left), ma%(Rb,right, Rc,right))- 
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Figure 27:   Four other regions obtained for the person image. The white curves are the 
Curved Inertia Frames from which the regions where recovered. 
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Figure 28: This Figure illustrates how the scheme can be used to guide attention. 
Top left,: Close up image of face. Top center: Skeletal curve through face. Top right: 
Maximum inertia point on face derived as center of mass of skeletal curve. Bottom left: 
Inertia map along entire skeletal curve, extending beyond the bottom of this image. 
Bottom right: Expanded inertia map focusing on area around face. 

13     What Occludes What? 

Our scheme solves the problem of finding different regions by looking at the large struc- 
tures one by one. The larger structures are the first ones in being recovered, this cuts small 
structures that are covered by larger structures into different parts. This embodies the 
constraint that larger structures tend to be perceived as occluding surfaces [Petter 1956]. 
(See Figure 29). 

39 



• 

K~ TVWT* / / -/^> JA T/V/_CS-—"^fc? 

.   . 
rTäP J-^77cA/-iM /MF ife^sä 

Figure 30:   Small structures, whether edges or regions are sometimes more salient. Le//; 
From [Rock 1984]. Right: Drawing of Miro. 

14     Small Is Beautiful Too 

As mentioned in [Subirana-Vilanova 1991], the emphasis of our scheme is towards find- 
ing large structures. However, this may be misleading as evidenced by Figure 30 where 
the interesting structure is not composed by individual elements that pop-out in the back- 
ground. Instead, in this case, what seems to capture our attention can be described as 
"what is not large". That is, looking for the large structures and finding what is left would 
recover the interesting structure as if we where getting rid of the background. It is unclear 
though, if this observation would hold in general. Future research is necessary. 

15     Are Edges Necessary? 

A central point in this paper has been that the computation of discontinuities should 
not precede perceptual organization. Further evidence for the importance of perceptual 
organization is provided by an astonishing result obtained recently by [Gumming, Hurlbert, 
Johnson and Parker 1991]: when a textured cycle of a sine wave in depth (the upper half 
convex, the lower half concave) is seen rotating both halfs may appear convex6, despite 
the fact that this challenges rigidity' (in fact, a narrow band between the two ribbons 
is seen as moving non-rigidly!)-   This, at first, seems to violate the rigidity assumption. 

The surface can be described by the equation Z = sin(y) where Z is the depth from the fixation plane. 
The rotation is along the Y-axis by -f / —  10 degrees at 1 Hz. 

This observation is relevant because it supports the notion that perceptual organization is computed in 
the image before structure from motion is recovered. 
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However, these results provide evidence that before finding the structure from motion, the 
human visual system may segment the image into different components. Within each of 
this, rigidity can prevail. 

Evidence against any form of grouping prior to stereo is provided by the fact that we 
can understand random dot stereo diagrams even though there is no evidence at all for per- 
ceptual groups in one single image. However, it is unclear from current psychological data if 
this displays take longer time. If they do, one possible explanation (which is consistent with 
our suggestions) may be that they impair perceptual organization on the individual images 
and therefore stereo computations. We believe that the effect of such demonstrations has 
been to focus the attention on stereo without grouping. But perhaps grouping is central to 
stereo and R.D.S. are just an example of the stability of our stereo system. 

A second central point of this paper is that edge detection may not precede perceptual 
organization. However, there are a number of situations in which edges are clearly necessary 
as when you have a line drawing image8 or for the Kanizsa figures. Nevertheless some sort 
of region processing must be involved also since surfaces are also perceived. We (like others) 
believe that region-based representations should be sought even in this case. In fact, as we 
noted in section 2, line drawings are harder to recognize (just like R.D.S. seem to be - but 
see [Biederman 1988]). The role of discontinuities versus such of regions is still unclear. 

16     What's New 

In this paper we have argued that early visual processing should seek representations 
that make regions explicit, not just edges. Furthermore, we have argued that region repre- 
sentations should be computed directly on the image (i.e. not directly from discontinuities). 
These suggestions can be taken further to imply that an attentional "coordinate" frame 
(which corresponds to one of the perceptual groups obtained) is imposed in the image prior 
to constructing a description for recognition (see also [Subirana-Vilanova and Richards 
1991]). We have provided some motivation by listing both, a number of problems with 
alternatives approaches and arguments in favor of region-based schemes. 

Our scheme suggests that vision may start by computing a set of features all over 
the image (corresponding to the inertia values and the tolerated length). This can be 
thought of as "smart" convolutions of the image with suitable filters plus some simple non- 
linear processing. In fact, recently filter-based approaches to texture have been presented 
[Knuttson and Granlund 1983], [Turner 1986], [Fogel and Sagi 1989], [Malik and Perona 
1989], [Bovik, Clark and Geisler 1990], stereo [Kass 1983], [Jones and Malik 1990] brightness 

• 

8Although note that each line has 2 edges (not just one), generally it is assumed that when we look at 
such drawings we ignore one of the edges. An alternative possibility is that our visual system assembles a 
region-based description from the edges without merging them. 
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edge detection [Canny 1986], [Morrone. Owens and Burr 1987, 1990], [Freeman and Adelson 
1990] and motion [Heeger 1988]. (See also [Abramatic and Faugeras 198*2], [Marrone and 
Owens 1987]). Our proposal differs from theirs in the non-linear filter proposed and in the 
use of the filter output to look for ridges and regions, not discontinuities. 

This has been the motivation for designing a new non-linear filter for ridge-detection. 
Our ridge detector has a number of advantages over previous ones since it selects the 
appropriate scale at each point in the image, does not respond to edges, can be used with 
brightness as well as color data, is tolerant to noise and can handle narrow valleys and 
multiple steps. 

The resulting scheme can segment an image without making explicit use of discontinu- 
ities and is computationally efficient on the Connection Machine (takes time proportional 
to the size of the image). The performance of the scheme can in principle be attributed to a 

number of intervening factors; but we believe that one of the critical aspects of the scheme 
(and one of the contributions of this paper) is our ridge-detector. Running the scheme on 
the edges or using simple gabor filters would not yield comparable results. The effective 
use of color makes the scheme very robust but we believe that comparable results would be 
obtained on brightness or texture data. 

References 

[1] J-F. Abramatic and 0. Faugeras. Sequential convolution techniques for image filtering. 
IEEE Trans. Acoust., Speech, Signal Processing, 30(1):1-10, 1982. 

[2] N. Badler and R. Bajcsy. Three-dimensional representations for computer graphics 
and computer vision.  Computer Graphics, 12:153-160, 1978. 

[3] D. Beymer. Finding junctions using the image gradient. In Proceedings IEEE Conf. 

on Computer Vision and Pattern Recognition, pages 720-721, Ann Arbor, MI, 1991. 

[4] I. Biederman and G. Ju. Surface versus edge-based determinants of visual recognition. 
Cognitive Psychology, 20:38-64, 1988. 

[5] T.O. Binford. Visual perception by a computer. In Proceedings of the IEEE Conf. on 
Systems and Controls, Miami, 1971. 

[6] Bovik, Clark, and Geisler. Multichannel texture analysis using localized spatial filters. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12:56-65, 
1990. 

[7] M. Brady. Seeds of perception. In Proceedings of the Third Alvey Vision Conference, 
(Cambridge University, 15-17 September), pages 259-266. The University of Sheffield 
Printing Unit, 1987. 

42 



[8] R.A. Brooks. Symbolic reasoning among 3-D models and 2-D images. Artificial Intel- 
ligence, 17:285-348,1981. 

[9] R.A. Brooks, G. Russell, and T. Binford. The acronym model based vision system. In 
Proceedings IJCAI, pages 105-113, 1979. 

[10] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, PAMI-8:679-698, 1986. 

[11] P. Cavanagh. Reconstructing the third dimension: Interactions between color, tex- 
ture, motion, binocular disparity, and shape. Computer Vision, Graphics, and Image 
Processing, 37:171-195, 1987. 

[12] J.J. Clark. Singularity theory and phantom edges in scale space. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, PAMI-10:720-727, 1988. 

[13] D. Clemens. Region-based feature interpretation for recognizing 3D models in 2D im- 
ages. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1991. 

[14] B.G. Cumming, A.C. Hurlbert, E.B. Johnson, and A.J. Parker. Effects of texture and 
shading on the kde. In The Association for Research in Vision and Ophthalmology. 
Annual Meeting Abstract Issue. Vol 32, NO. 4, page 1277, Bethesda, Maryland 20814- 
3928,1991. 

[15] I. Fogel and D. Sagi. Gabor filters as texture discriminators. Biological Cybernetics, 
61:103-113, 1989. 

[16] D. Forsyth and A. Zisserman. Mutual illumination. In Proceedings IEEE Conf. on 
Computer Vision and Pattern Recognition, pages 466-473, 1989. 

[17] W.T. Freeman and E. H. Adelson. Steerable filters for early vision, image analysis and 
wavelet decomposition. In Third International Conference on Computer Vision, pages 
406-415. IEEE Computer Society, 1990. 

[18] D. Geiger and T. Poggio. An optimal scale for edge detection. In Proceedings IJCAI, 
pages 745-748, Milan, Italy, 1987. 

[19] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian 
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli- 
gence, PAMI-6:721-741, 1984. 

[20] M.A. Gennert. Detecting half-edges and vertices in images. In Proceedings IEEE Conf. 
on Computer Vision and Pattern Recognition, pages 552-557, 1986. 

[21] G. Giraudon and R. Deriche. On corner and vertex detection. In Proceedings IEEE 
Conf. on Computer Vision and Pattern Recognition, pages 650-655, Lahaina, Maui, 
Hawaii, 1991. 

[22] W. Eric L. Grimson. From Images to Surfaces. MIT Press, Cambridge, Mass., 1981. 

43 



[23] W.E.L. Crimson. Object Recognition By Computer: The Role Of Geometric Con- 
straints. The MIT Press, Cambridge and London, 1990. 

[24] A. Guzman. Decomposition of a visual scene into three-dimensional bodies. In Proc. 
AFIPS 1968 Fall Joint Computer Conference, pages 291-304, 1968. 

[25] A. R. Hanson and E. M. Riseman. Segmentation of natural scenes. CVS. 

[26] R.M. Haralick and L.G. Shapiro. Image segmentation techniques. Computer Vision, 
Graphics, and Image Processing, 29:100-132, 1985. 

[27] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the 
Fourth Alvcy Vision Conference (Manchest er University, 31st August-2nd Septem- 
ber), pages 147-152. The University of Sheffield Printing Unit, 1988. 

[28] D. Heeger. Optical flow from spatiotemporal filters. In Proceedings of the First Inter- 
national Conference on Computer Vision, pages 181-190, 1988. 

[29] H. Helson. Fundamental principles in color vision. Journal of Exp. Psychoi, 23:439- 
471, 1938. 

[30] B. K. P. Horn. Understanding image intensities. Artificial Intelligence, 8, 1977. 

[31] S. L. Horowitz and T. Pavlidis. Picture segmentation by a direct split and merge 
procedure, pages 424-433, August 1974. 

[32] D.P. Huttenlocher and P. Wayner. Finding convex edge groupings in an image. TR 
90-1116, Department of Computer Sciences, Cornell University, Ithaca, New York, 
1990. 

[33] D.W. Jacobs. Grouping for recognition. A.I. Technical Report No. 1117, Artificial 
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1989. 

[34] A. Jepson and W. Richards. Integrating vision modules. IEEE Systems and Cyber- 
netics, 1991. Special Issue on Assimilation. Editor: A. Jain. To appear. 

[35] D. Jones and J. Malik. Computational stereopsis-beyond zero-crossings. Invest. Oph- 
talmol. Vis. Sei. (Supplement), 31(4):529, 1990. 

[36] D. B. Judd and G. Wyszecki. Color in Business, Science and Inelustry (Third Edition). 
Wiley, New York, 1975. 

[37] D.B. Judd. Appraisal of land's work on two-primary color projections. Journal of the 
Optical Society of America, 50:254-268, 1940. 

[38] G. Kanizsa. Organization in Vision. Praeger, 1979. 

[39] M. Kass. Computing visual correspondence. In From Pixels to Predicates, pages 78-92. 
Ablex Publishing Corporation. Norwood. NH, 1986. 

44 



• 

[40] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International 
Journal of Computer Vision, pages 321-331, 1988. 

[41] H. Knuttson and G.H. Granlund. Texture analysis using two-dimensional quadra- 
ture niters. In Workshop on Computer Architecture for Pattern Analysis and Image 
Database Management, pages 206-213, IEE Computer Society, 1983. 

[42] J.J. Koenderink. The structure of images. Biological Cybernetics, 50:363-370, 1984. 

[43] A. Koffka.  The principles of Gestalt psychology. Harcourt, Brace, New York, 1940. 

[44] W. Köhler. Dynamics in psychology. Liveright, New York, 1940. 

[45] A.F. Korn. Toward a symbolic representation of intensity changes in images. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 10(5):610-625, 1988. 

[46] D.G. Lowe. Perceptual Organization and Visual Recognition. PhD thesis, Standford 
University, 1984. 

[47] D.G. Lowe. Three-dimensional object recognition from single two-dimensional images. 
Artificial Intelligence, 31:355-395, 1987. 

[48] Y. Lu and R.C. Jain. Behavior of edges in scale space. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, PAMI-ll:337-356, 1989. 

[49] J.V. Mahoney. Image chunking: defining spatial building blocks for scene analysis. A.I. 
Technical Report No. 980, Artificial Intelligence Laboratory, Massachusetts Institute 
of Technology, Cambridge, MA, 1987. 

[50] J. Malik and Z. Gigus. A model for curvilinear segregation. Invest. Ophtalmol. Vis. 
Sei. (Supplement), 32(4):715, 1991. 

[51] J. Malik and P. Perona. A computational model of texture perception. Report No. 
UCB-CSD 89-491, Computer science division (EECS), University of California, Berke- 
ley, CA, 1989. 

[52] J. Malik and P. Perona. Preattentive texture discrimination with early vision mecha- 
nisms. Journal of the Optical Society of America, 7(5):923-932, 1990. 

[53] D. Marr. Vision: A Computational Investigation into the Human Representation and 
Processing of Visual Information. W.H. Freeman and Company, New York, 1982. 

[54] D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the Royal Society 
of London, B(207):187-217, 1980. 

[55] J.L. Marroquin. Human perception of structure. Master's thesis, Massachusetts Insti- 
tute of Technology, 1976. 

[56] G. Medioni and Y. Yasumoto. Corner detection and curve representations using cubic 
b-splines.  Computer Vision, Graphics, and Image Processing, 39:267-278, 1987. 

45 



• 

[57] M.C. Morrone and D.C. Burr. A model of human feature detection based on matched 
filters. In P. Dario and G. Sandini, editors, Robots and biological systems. Academic 
Press, 1990. 

[58] J.A. Noble. Morphological feature detection. In Proceedings of the First International 
Conference on Computer Vision, pages 112-116, Dec 1988. 

[59] A. Pentland. Parallel part segmentation for object recognition. Technical Report 108, 
Vision Sciences, Media Laboratory, Massachusetts Institute of Technology, Cambridge, 
MA, 1988. 

[60] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In 
Proceedings of a Workshop on Computer Vision, Published by IEEE Computer Society 

Press, Washington, DC, pages 16-22, Miami Beach. FL, 1987. 

[61] P. Perona and J. Malik. Detecting and localizing edges composed of steps, peaks and 
roofs. In IEEE Computer Society, editor, Third International Conference on Computer 
Vision, pages 52-57, 1990. 

[62] G. Petter. Nuove ricerche sperimentali sulla totalizzazione percepttiva. Rivista di 
psicologia, 50:213-227, 1956. 

[63] S.M. Pizer, CA. Burbeck. and J.M. Coggins. Object shape before boundary shape: 
scale-space medial axes. In Springer-Verlag, editor, Proceedings of a NATO Workshop 
Shape in Picture, 1992. 

[64] T. Poggio, E.B. Gamble, and J. Little. Parallel integration of vision modules. Science, 

242:436-440,1988. 

[65] J. Ponce and M. Brady. Towards a surface primal sketch. A.I. Memo No. 824, Artificial 
Intelligence Laboratory, Massachusetts Institute of Technology, 1985. 

[66] I. Rock. Perception. Sei. American Library, 1984. 

[67] J.M. Rubin and W.A. Richards. Colour vision and image intensities: When are changes 
material. Technical Report AIM-631. Artificial Intelligence Laboratory, Massachusetts 
Institute of Technology. 1981. 

[68] T. Ryanm and C. Schwartz. Speed of perception as a function of mode of representa- 
tion. American Journal of Psychology. 69:60-69, 1956. 

[69] T. Sänger. Stereo disparity computation using gabor filters. Biologiceil Cybernetics, 
59:405-418,1988. 

[70] B.G. Schunck. Edge detection with gaussian filters at multiple scales. In Proceed- 
ings of a Workshop on Computer Vision. Published by IEEE Computer Society Press, 
Washington, DC, pages 208-210, Miami Beach. FL, 1987. 

46 

• 



[71] A. Sha'ashua and S. Ullman. Structural saliency: The detection of globally salient 
structures using a locally connected network. In Proceedings of the First International 
Conference on Computer Vision, pages 321-327, 1988. 

[72] A. Singh and M. Shneier. Grey level corner detection: A generalisation and a robust 
real time implementation. Computer Vision, Graphics and Image Processing, 51:54-69, 
1990. 

[73] J.G. Snodgrass and M. Vanderwart. A standarized set of 260 pictures: Norms for 
name agreement, image agreement, familiarity, and visual complexity. Journal of 
Experimental Psychology: Human Perception and Performance, 6(2):174-215, 1980. 

[74] J.B. SubiranaVilanova. Curved inertia frames and the skeleton sketch: finding salient 
frames of reference. In Proceedings of the First International Conference on Computer 
Vision, pages 702-708. IEEE Computer Society Press, 1990. 

[75] J.B. SubiranaVilanova. The skeleton sketch: finding salient frames of reference. In 
Proceedings Image Understanding Workshop, pages 399-414. Morgan and Kaufman, 
1990. 

[76] J.B. SubiranaVilanova. Curved inertia frames: Perceptual organization and attention 
using convexity and symmetry. A.I. Memo No. 1137, Artificial Intelligence Laboratory, 
Massachusetts Institute of Technology, 1991. 

[77] J.B. SubiranaVilanova. On contour texture. In Proceedings IEEE Conf. on Computer 
Vision and Pattern Recognition, pages 753-754, Ann Arbor, MI, 1991. 

[78] J.B. SubiranaVilanova and W. Richards. Figure-ground in visual perception. In The 
Association for Research in Vision and Ophthalmology. Annual Meeting Abstract Issue. 
Vol 32, NO. 4, page 697, Bethesda, Maryland 20814-3928, 1991. 

[79] K. Sung. A vector signal processing approach to color. AI-TR No. 1349, Artificial 
Intelligence Laboratory, Massachusetts Institute of Technology, 1992. 

[80] D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAML8(4), July 
1986. 

[81] R.S. Thau. Uluminant precompensation for texture discrimination using filters. In 
Proceedings Image Understanding Workshop, pages 179-184, Pittsburgh, Pennsylva- 
nia, 1990. Morgan Kaufman Publishers Inc., San Mateo, CA. 

[82] M. Turner. Texture discrimination by gabor functions. Biological Cybernetics, 55:71- 
82, 1986. 

[83] S. Ullman. Filling in the gaps: The shape of subjective contours and a model for their 
generation. Biological Cybernetics, 25:1-6, 1976. 

[84] S. Ullman. Visual routines. Cognition, 18, 1984. 

47 



[85] D.L. Waltz. Understanding line drawings of scenes with shadows. In P. Winston, 
editor, The Psychology of Computer Vision. McGraw-Hill, New York, 1972. 

[86] M. Wertheimer. Principles of perceptual organization. In B. Beardslee and 
M. Wertheimer, editors, Readings in perception. Van Nostrand. Princeton, 1958. Orig- 
inally published in 1923. 

[87] A.P. Witkin. Scale-space filtering. In Proceedings IJCAI, pages 1019-1022, 1983. 

[88] A.P. Witkin. Scale space filtering: a new approach to multi-scale description. In 
Proceedings Image Understanding Workshop, pages 79-95, Pittsburgh, Pennsylvania, 
1984. Morgan Kaufman Publishers Inc., San Mateo, CA. 

[89] A.P. Witkin and J.M. Tenenbaum. On the role of structure in vision. In J. Beck, 
B. Hope, and A. Rosenfeld, editors, Human and Machine Vision. Academic Press, 
New York, 1983. 

[90] S. Zhong and S. Mallat. Compact image representation from multiscale edges. In 
IEEE Computer Society, editor, Third International Conference on Computer Vision, 
pages 406-415, 1990. 

[91] X. Zhuang, T.S. Huang, and H.H. Chen. Multi-scale edge detector using gaussian 
filtering. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, 
pages 558-563, 1986. 

[92] S.W. Zucker, A. Dobbins, and L. Iverson. Two stages of curve detection suggest two 
styles of visual computation. Neural Computation, 1(1):68—81, 1989. 

48 


